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ABSTRACT

In mobile radio communications, antenna arrays can be used
to improve the quality and/or the capacity of the commu-
nication system. The combination of an antenna array and
maximum likelihood sequence detection (MLSE) is studied
here. Different realizations of the multi-channel MLSE are
presented. Although equivalent in performance, it is pointed
out that one of them, the multi-dimensional matched filter
approach, is superior in terms of computational complex-
ity when more than one antenna is used. For completeness,
temporally colored noise is included in the formalism.

I. INTRODUCTION

Antenna arrays can be used to improve the quality and/or
the capacity of a mobile radio communication system. The
array processing for the antenna array can be combined with
channel equalization or symbol detection. Here we com-
bine maximum likelihood sequence estimation (MLSE) [1]
[2] with the processing for the antenna array. This can be
realized with a multi-channel MLSE.

Several different, but basically equivalent, realizations of
the multi-channel MLSE can be found in the literature [3]
[4] [5] [6] [7]. Three approaches, the log-likelihood, noise
whitening and multi-dimensional matched filtering approach,
are presented here. Although these approaches are equiva-
lent in terms of their performance, one of them, the multi-
dimensional matched filter implementation, is superior when
using more than one antenna, since it requires less compu-
tations.

Handling of spatially colored noise and interference is
readily performed with the multi-channel MLSE. For a more
complete treatment temporally colored noise and interfer-
ence is also included.

II. DIFFERENT DERIVATIONS OF THE
MULTI-channel MLSE

A. Notation and channel description

In the discussion below, a polynomial description of filters
will be used. For example, a causal FIR-filter will be rep-
resented with a polynomial in the delay operator, ¢—!, as

exemplified below

v(t) = A(g Hu(t) = (a0 + a1q™ " + ... + anaqg "*)u(t)
=aou(t) + aru(t — 1) + ... + anqu(t — na) (1)

Filters will also be allowed to have term with powers of ¢,
the advance operator.

MISO and SIMO filters are represented as polynomial
row and column vectors, respectively. MIMO filters are rep-
resented as polynomial matrices.

The complex conjugate transpose of a filter is written as

(Al = A8 () =all +alflqg+...+adl g™ (2

Note that the filter is also time reversed.
The received signal at the M receiving antennas, y(t) =
[y2(t) y2(t) ym(t)]T can now be written

y(t) = B(g~")d(t) +n(t) 3)

where B(¢™") = [Bi(¢™!) Bax(¢™?) Bu(a™)]" rep-
resents the causal FIR channels to the antenna elements for
the transmitted scalar symbol sequence d(t). The noise plus
interference is represented by the vector n(t).

B. Log-likelihood metric and noise whitening ap-
proach

The straightforward method of deriving the MLSE is to
maximize the probability for the received sequence, y(t),
of length N. If the noise and interference, for simplicity, is
assumed Gaussian, then this probability can be expressed:
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where R~ (g 1) is the inverse of the causal part of the spec-
tral factorization of the noise plus interferer spectrum

R(a,q"') = R"*(¢")R"*(q) = ) Eln(t)n” (t —m)lg™™ (5)

m=—0o0

The filter R~'/?(¢q~') whitens the noise samples n(t) =
{y(t) — B(¢7")d(t)} and gives them unit variance.

Maximizing the probability in (4), is equivalent to mini-
mizing the log-likelihood metric

N

pLL = Z [R_l/z(q_l) {y(@®) - B(q_l)d(t)}]H

t=1

x [B2(™) {y®) - Bla™")d(t)}] (6)



By forming the filtered signal,

y'(t) = R~ (¢ y(®) (7)
and the new channel
B'(g")=R"3(¢ H)B(g ) (8)
the log-likelihood metric can be expressed as
N
prr =Y [y'(t) = B'(g™)d®)] " [y () - B'(¢~H)d(t)] (9)
t=1

The metric can be recursively computed according to

pro(t) = prr(t—1) + [y'(t) = B'(¢™)d(t)]
x [y'(t) = B'(¢”")d(t)] (10)

This metric can be minimized by using the Viterbi algo-
rithm [8], replacing the standard scalar metric computation
with the above vector formulation. Approaches similar to
this can for example be found in [6], [5] and [7]. Since the
Viterbi algorithm here works with a vector input we call it
a vector Viterbi. The block diagram for an MLSE using this
approach is depicted in Figure 1a.

If desired, we can move the whitening filter outside the
vector Viterbi algorithm as shown in Figure 1b. We call this
the noise whitening approach.

H

C. Multi-dimensional matched filter approach

Another formulation of the multi-channel MLSE is to for-
mulate it in terms of a multi-dimensional matched filter as
in [3] and [4]. These formulations can be seen as gener-
alizations of [1] to the case with multiple channels. Using
y'(t) and B'(g~"') (with coefficients b)) from equations (7)
and (8), the matched filter version can be derived from the
log-likelihood metric in (6) as:
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where the scalar signal z(t) is defined by

2(t) = W(g, a7 y(t) = BT (@R (g,a M y(®)  (11)
and v is the k:th coefficient of the metric polynomial

T(¢,¢") = B"(¢)R " (¢,a7")B(¢™") (12)
with the coefficients numbered as
C(q,q7") = Yemy@™ + - %+ -+ Tnyg™ (13)

The term f(y(-)) does not depend directly on the trans-
mitted symbols, d(-), and can therefore be dropped. The
term e qer 18 @ correction term that only depends on the
values of y(t) and d(t) for ¢ close to 1 or N. Neglecting
the “border effects” and changing the sign such that the
matched filter metric is to be mazimized gives

HMFZQRG{Z (n)d(n } sz (n)Yn—m m)( )

n=1m=1
When T'(q,q~!) is complex conjugate symmetric, this metric
can be recursively computed as

prvr(t) = pvr(t —1) + Re{d* (t)(22(t) — vod(t)

ny+1
2y e —m)} (15)

We call the filter, W(q,q™') = BH(¢)R™(q,q7'), a
multidimensional matched filter (MMF). Note also that the
memory length in the Viterbi algorithm using the matched
filter metric in (14), is the same as for the Viterbi algorithm
using the log-likelihood metric in (9).

An advantage with this latter version of the multi-channel
MLSE, is that due to the matched filtering, only a scalar
Viterbi algorithm is required. This reduces the the com-
plexity of the metric computation in the Viterbi algorithm.

A block diagram of the MLSE using the multi-dimensional
matched filter approach can be seen in Figure 1c. Note also
that the multi-dimensional matched filter can be broken up
into a noise whitening part, R~'/2(¢~'), and a filter matched
to the overall resulting SIMO channel, B¥ (q) R=H/2(gq). This
can be seen in Figure 1d.

In the case with temporally colored noise, a problem
arises. Unless the noise is colored by an AR-filter, the fil-
ter R~1(g,q~ ') will have a double sided infinite impulse re-
sponse. This results in an infinite memory length in the
Viterbi algorithm. Either only the metric or both the met-
ric and the MMF has to be truncated. The same will be
required for the log-likelihood and noise whitening approach.
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Figure 1: Different approaches for multi-channel MLSE.

III. COMPUTATIONAL COMPLEXITY

Let us assume that the channel B’(q) is approximated by
an FIR filter with nb + nr + 1 taps. If L is the number of
symbols in the alphabet, a Viterbi algorithm then requires,
Lnb+nr+1 metric updates for each detected symbol.

If the channel is assumed stationary, the computational
complexity of the log-likelihood metric and the whitening
filter approach, measured by the number of complex multi-
plications and additions per symbol detected, will be

Crr ~ M*(nr 4+ 1) + M (nb + 2) L(b+n7+1) (16)

where M is the number of channels.

Because the matched-filter metric operates a scalar Viterbi-

algorithm, the complexity for this approach will be
Cur = M(2nr + nb + 1) + (nb+ 2) L7+ (17)

It can be seen from these expressions, that if the number
of antennas is more than one, the matched-filter metric has
a definite advantage over the log-likelihood metric.

IV. TUNING THE MULTI-DIMENSIONAL
MATCHED FILTER

The multi-dimensional matched filter, W(q,q~!), and the
metric polynomial, I'(g, ¢~ !), can be tuned in a few different
ways.

y(t) == Wi(g,q") e(t)

d(t)— T(g,q7")

Figure 2: MMF filter tuning.

A. Direct tuning

In [9] and [3], generalizations of the direct approach in [1]
are presented. The coefficients of a feedforward filter and
the coefficients of an non-causal feedback filter are tuned to
minimize the mean square error (MSE) of the error signal,

e(t) = W(g,a "y(t) — (g, ¢ )d(t) (18)

See Figure 2. By this minimization, noise whitening and

matched filtering will be performed by W (q, ¢~ '), while I'(¢, ¢ 1)

will contain the overall impulse response. The polynomial
row vector, W(g,q~}) = [Wi(g,q™) ... Wai(g,q V)], is a
MISO FIR filter and T'(g,q~!) is a double sided, complex
conjugate symmetric, non-causal FIR-filter with the middle
coefficient, 7o, constrained to be equal to one. That is,

D(g,q7") = Yonygt™ + +1+ + Vg™ (19)

with y_ = v§.

It is natural to chose the structure of the feedforward
filter, W (q,q '), consistent with an ideal MMF with a trun-
cated noise plus interference spectrum, B (q)R~(q,q™ ).
The spectrum, B! (g,q71), here represents a truncated ver-
sion of R=Y(q,q!). The filter W(q,q~!) will thus be non-

causal or anti-causal, since B¥ (q) is anti-causal and R~ (¢, ¢~ ")

either a matrix constant or a double-sided polynomial ma-
trix. It is also natural to choose the number of coefficients in
T'(g,q!) consistent with the structure chosen for W(q, ¢ 1),
according to T(¢,4~") = B () R(g, =) B(g™").

The estimates W(g,q¢ ') and I'(¢,¢ ') can be found ei-
ther adaptively or by solving a system of equations formed
directly from the training data.

When the true filter orders are used and the training
sequence is long enough, the MMF will be contained in the
estimate W (g, q™!), up to a multiplicative constant, and the
corresponding metric to be used in the Viterbi algorithm will
be contained in the estimate I'(g,¢~') [9]-

A problem arises if the available training sequence is
short. If for instance the number of training symbols is
smaller than the number of coefficients in the filters, then
the coefficients cannot be determined uniquely. A regular-
ization of the equations can be introduced. By adding ar-
tificial noise into the system of equations, a solution can
be computed, but it will in general be inferior to the true
matched filter.

By adjusting the number of coefficients in W (gq,¢ ') and
I'(g,q7 '), the ability to combat temporally colored interfer-
ence can be varied. Adding more coeflicients increases the
filters temporal noise whitening as well as matched filtering



capability at the expense of more degrees of freedom and a
longer memory in the metric.

B. Indirect MMF tuning

In the indirect approach the channel, B(q~!), is first iden-
tified. An estimate of the noise plus interference spectrum,
R(q,q7 1), can then be formed using the residuals from the
identification procedure.

The channel can be identified in different ways. We will
here assume that a short training sequence is available.

The channel, B(qg~!), can for example be identified with
a standard least squares method. It is also possible to
parametrize each vector tap in B(g~!) in terms of direc-
tions of arrival and complex amplitudes of a finite number
of paths. This parametrization can then be used in order
to attempt to improve the initial least squares channel esti-
mate. Examples of both these methods can be found in [10].

In [11] a method is presented that makes use of the
knowledge of the pulse shaping function in the modulation.
This will further improve the channel estimates.

It is also possible, using the pulse shaping function, to
parametrize the channel, B(g~!), in terms of directions of
arrival, complex amplitudes and delays of a finite number
of paths. These parameters can then be estimated with a
maximum likelihood method [12].

Theoretically, if the spectrum is invertible, estimates of
the MMF, W (q, ¢ '), and of the metric polynomial, I'(g,q 1),
can then be formed as

W(g,q7") =B ()R (q,q7") (20)

I(g,q7") = B¥ ()R (¢,¢"")B(¢™") (21)

where the “hat” marks quantities derived from the estimated
channel, B(q_l), or the estimated noise spectrum, R(gq, q7b).

Two problems arises. First, the filter R~1(q,q™1) will
in general be a double sided IIR filter. In order to have
a finite memory in the Viterbi algorithm, the metric has
to be truncated. Second, unless the training sequence is
long, R(q,q~!) cannot be properly identified. A good choice
that produces a solution to both problems is to identify and
use only the spatial correlation of the noise, i.e. the zeroth
matrix coefficient Rg.

C. Indirect MMSE tuning

An alternative indirect way of tuning the multi-dimensional
matched filter is to perform the minimization of the MSE
of the error signal in (18), but instead of forming the sys-
tems of equations directly from data, we form them from
the identified channel, B(¢™'), and the matrix coefficients
of the estimated noise spectrum, R(q, q~1). The number of
matrix coefficients of I%(q, q~1) used, and the structure and
length of the filters W (g, ¢ ') and T'(g, ¢~ '), affects the tem-
poral noise whitening and matched filtering capabilities. By
constraining the filter structures, the memory length in the
Viterbi algorithm can be controlled.

If the same structure is used and only the spatial noise
plus interference spectrum is utilized, the two indirect meth-
ods are equivalent. The methods differ only in the way they
handle temporally colored noise plus interference.

The indirect MMSE tuning of the MMF has the potential
advantage that it for a given filter structure, and a given
noise plus interference spectrum used, finds filter coefficients
that performs a compromise between noise whitening and
matched filtering.

An interesting question to study, is if the indirect meth-
ods can handle a case with very low signal-to-interference
ratio (SIR). It could be suggested, that very poor SIR would
make identification of the channels to the individual antenna
elements unfeasible. Although the quality of the identified
channels may be compromised, the simulations for the sce-
nario presented here do not show that the indirect methods
suffer much from this.

V. SIMULATIONS
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Figure 3: BER as a function of the SIR. SNR=2dB. Training
sequence length=26. Indirect tuning using only spatial noise
color (solid). Direct tuning with regularization (dashed) and

without (dash-dotted).
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Figure 4: BER as a function of the training sequence length.
SIR and SNR is 0 dB. Indirect tuning using only spatial noise
color (solid). Direct tuning with regularization (dashed) and
without (dash-dotted).

The purpose of the simulations presented here is to study
how the indirect methods can handle poor signal to interfer-
ence ratios and to demonstrate that the direct method has
problems with short training sequences.



The algorithms compared are the indirect method (either
one), when using only the spatial color of the noise plus
interference, and two versions of the direct method. One
without regularization and one with artificial noise with a
variance equal to the real noise variance, added to the di-
agonal of the system of equations. In all cases 5 taps in
W(g,q ') and 9 taps in I'(¢q,q ), were used.

The channels for the indirect method were identified with
the standard least squares method.

The algorithms were tested using a circular array with
eight antennas equally spaced along a circle with a radius
of 0.5 wave lengths. The desired signals arrives from the
directions 0,30,-60 and 180 degrees. The respective chan-
nels are 1+ 0.5¢ ", 0.5¢ ' + 0.8¢ 2, 0.5¢ 2 + 0.2¢ % and
0.2¢73 + 0.3¢*. Two-tap channels are chosen in order to
simulate imperfect sampling timing or partial response mod-
ulation. Binary symbols, d(t) = 1, are used. Co-channel
interferers impinge on the antenna array, also through two
tap channels, from the directions -30, 135 and -135 degrees.
White Gaussian noise was also added.

In Figure 3, the BER for the different algorithms can be
seen as a function of the SIR. It can be seen from the figure,
that the indirect method does not suffer significantly in this
scenario from the poor SIR conditions. The direct methods,
of course, perform poorly here since the training sequence
was only 26 symbols long.

In Figure 4, the BER is presented as a function of the
length of the training sequence used. When the training se-
quence length increases the performance of the direct meth-
ods approaches that of the indirect method. The indirect
method performs better since it focuses on the spatial color
of the noise plus interference, which is the most important
in this and many other antenna array scenarios.

VI. SUMMARY

The log-likelihood metric, the noise whitening and the matched

filter approach, are all equivalent in terms of performance.
The matched filter approach is however superior in terms
of computational complexity when more than one antenna
is used. The metric computation in the Viterbi part of the
algorithm, is reduced by a factor equal to the number of
antennas, when compared to the log-likelihood metric ap-
proach.

The indirect MMSE tuning presented, has interesting
variability in its structure that allows tradeoffs between com-
plexity and performance. The MMF:s ability to temporally
whiten noise and match filter the signal, as well as control-
ling the memory length of the subsequent Viterbi-algorithm,
can be varied. The usefulness of this for, for example a
TDMA system with a short training sequence, remains to
be assessed.

Although temporal whitening of noise plus interference is
included in the formalism, the usefulness of this also remains
to be determined. It is probably especially difficult to make
use of the temporal color of the noise plus interference when
only a short training sequence is available for the tuning.

If fractionally spaced sampling is required in order to get
the sampling frequence up to, or above, twice the maximum
relevant frequency content in the received signal, this can be
accomplished by adding the fractionally spaced samples as
signals from virtual sensors, adding extra channels.
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