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We will present a simple and flexible method for building performance robustness
into the design of linear filters for open loop problems. Such problems include
signal estimation, state estimation and feedforward control. The key is a novel de-
sign method for Wiener filters. It can be regarded as a generalization of Kucera’s
polynomial approach. A detailed presentation of this method is given in Sternad
and Ahlén (1992,1993). Here, we briefly describe the design of robust feedforward
links from disturbances or from command signals.

Can the performance robustness of a feedforward controller be improved? For any
such compensator, Bodes relative sensitivity function is = 1. This means that
a % parameter deviation will result in a y% deviation of the transfer function
at frequency w;, regardless of the applied filter. However, the effect of the y%
deviation on e.g. the step response will very much depend on the magnitude of
the transfer function at w;. (The absolute sensitivity function describes this effect,
while the commonly used relative one misses it completely!) When the perfor-
mance of a nominal LQG controller is sensitive to model errors, our robustified
control achieves a radical (absolute) sensitivity reduction. There is only a small
performance deterioration in the nominal case, if the assumed modelling errors are
not extremely large.

Modelling errors will be described by sets of systems, parametrized by random
variables with known covariances. Robust control is then obtained by minimizing
a quadratic criterion, averaged both with respect to model errors and the noise.
A polynomial solution, based on averaged spectral factorizations and a Diophan-
tine equation, is presented.

Robust design turns out to be no more complicated than the design of an ordi-
nary LQG feedforward controller. The proposed method is very simple to use,
and it also has two other advantages. First, probabilistic descriptions of model
uncertainties may have soft bounds. These are more readily obtainable in a noisy
environment than the hard bounds required for e.g. minimax design. Furthermore,
not only the range of uncertainties, but also their likelihood is taken into account;
common model deviations will have a greater impact on a controller design than
do very rare “worst cases”. The conservativeness is thus reduced, compared to
worst case design.



Let us briefly describe the model structure and design method. Consider a stable
discrete—time model, describing a scalar output to be controlled y(¢), input wu(t)
and a measurable signal w(t):
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u(t — k) + —w(t—d) ; w(t)= v(t)
F(q™) .

Here, v(t) is white, with unit variance. The possibly uncertain system B/A may

be open loop, or could represent a plant controlled by a given feedback regulator.

To take uncertainty into account, consider a model of the whole class of possible

systems. We use the polynomial parametrization
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Here, By/Ay etc. represent stable and known nominal models, while BiAB/A;
etc. are members of model error classes, with B;(¢™') and A;(¢™") being fixed.
The coefficients of AB, AD and AG are zero mean stochastic variables. They have
known positive semidefinite covariance matrices Pap etc. All denominators are
stable. This parametrization is flexible, without sacrificing linearity in stochastic
parameters. We present examples of how such stochastic additive error models can
be tailored to fit the size and the spectral properties of the model uncertainty.

A stable and causal feedforward filter, operating on w(t), is to be designed, in
order to minimize an infinite horizon quadratic criterion, with input penalty p > 0

J=EE(y(t)’ + pu(t)’)

Above, E and E denote expectation with respect to model error distributions and
noise, respectively.

In a disturbance measurement feedforward problem, w(t) represents the distur-

bance. In a command feedforward problem, w(t) is a command signal and (G/H)v(t)
is a stochastic model, describing its second order properties. A servo filter is

then to be designed, so that (B/A)u(t — k) optimally follows a response model

—(D/F)w(t—d). The solution to both these problems is given by two “averaged”

spectral factorizations and a Diophantine equation. It is presented below.

For any polynomial If(qfl), let P, = P(q). Calculate a stable and monic polyno-
mial spectral factor G(¢!), and a scalar s, from

sGG, = E(GG,) = GyGo. HHy. + E(AGAG,)G1G1,HoHy, .

(With no uncertainty, G = Gy.) Then, calculate another stable and monic spectral
factor 3(¢7'), and a scalar r, from

786« = BoBouA1 A1 + E(ABAB,) By B1. Ao Aos + pAogAsc A1 AL

Now, a stable and causal feedforward filter, minimizing J, is given by
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where Q(q™!), together with L,(q), is the unique solution to the Diophantine
equation )
G " By, A1.DoG = 1B,Q1 + qFyHoH, L,

We call the filter above a cautious Wiener filter. Averaged factors F(ABAB,) and
E(AGAG,) are symmetric polynomials. Their coefficients are readily obtained
from Pap and Pag, by summation diagonalwise. Note that only second order

moments or, equivalently, the frequency domain variances of the transfer func-

tions (F(ABAB,)B;1By,./A;1A;, etc.) need to be known. For identified models,
the variance in the frequency domain, corresponding to a given covariance matrix
for estimated polynomial coefficients, can be calculated approximately. (This is
done in e.g. the System Identification Toolbox for Matlab.) Using the stochastic
embedding approach, developed by G. C. Goodwin, the freqency domain variance
of modelling errors can be estimated directly from the data, also when the model
structure is incorrect. See Goodwin et al. (1992). If no data is available, error
models can still be used as robustness “tuning knobs” for the regulator design.

Design equations for the nominal case (without uncertainty) can be derived for
problems with frequency—dependent weights in the criterion and noise on w(t). By
comparing the solution above to such design equations, some important conclusions
can be drawn.

e The uncertainty G;AG/H; of the disturbance or reference generator has a
similar impact on the design as does a coloured measurement noise on w(t).

e The uncertainty B;AB/A; of the system has a similar impact as would a fre-
quency weighted input penalty in the criterion. Also, note that if |1/A4;(e™)|
has a resonance peak at frequecy w;, indicating large uncertainty, the feed-
forward controller will have low gain at that frequency.

e Somewhat surprisingly, uncertainty in D/F has no effect at all on the design.

The intuitive notion that assumption of measurement noise on w(t) and increase
of the input penalty p would improve the performance robustness of a nominal
design, is thus supported. With the above equations, the robustification can be
tailored more exactly to the expected type and amount of uncertainty.
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